CLASS NUMBERS OF CM ALGEBRAIC TORI, CM ABELIAN VARIETIES AND COMPONENTS OF UNITARY SHIMURA VARIETIES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moduli of CM abelian varieties

We discuss CM abelian varieties in characteristic zero, and in positive characteristic. An abelian variety over a finite field is a CM abelian variety, as Tate proved. Can it be CM-lifted to characteristic zero? Does there exist an abelian variety of dimension g > 3 not isogenous with the Jacobian of an algebraic curve? Can we construct algebraic curves, say over C, where the Jacobian is a

متن کامل

Varieties of CM-type by

We will introduce the notion of a variety (or more generally a motive) of CM-type which gen-eralises the well known notion of abelian variety of CM-type. Just as in that particular case it will turn out that the cohomology of the variety is determined by purely combinatorial data; the type of the variety. As applications we will show that the ℓ-adic representations are given by algebraic Hecke ...

متن کامل

On Cm Abelian Varieties over Imaginary Quadratic Fields

In this paper, we associate canonically to every imaginary quadratic field K = Q(√−D) one or two isogenous classes of CM (complex multiplication) abelian varieties over K, depending on whether D is odd or even (D 6= 4). These abelian varieties are characterized as of smallest dimension and smallest conductor, and such that the abelian varieties themselves descend to Q. When D is odd or divisibl...

متن کامل

P -adic Uniformization of Unitary Shimura Varieties

Introduction Let Γ ⊂ PGUd−1,1(R) 0 be a torsion-free cocompact lattice. Then Γ acts on the unit ball B ⊂ C by holomorphic automorphisms. The quotient Γ\B is a complex manifold, which has a unique structure of a complex projective variety XΓ (see [Sha, Ch. IX, §3]). Shimura had proved that when Γ is an arithmetic congruence subgroup, XΓ has a canonical structure of a projective variety over some...

متن کامل

Mordell-Weil growth for GL2-type abelian varieties over Hilbert class fields of CM fields

Let A be a modular abelian variety of GL2-type over a totally real field F of class number one. Under some mild assumptions, we show that the Mordell-Weil rank of A grows polynomially over Hilbert class fields of CM extensions of F .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 2020

ISSN: 0027-7630,2152-6842

DOI: 10.1017/nmj.2020.31